SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • ShellShell
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
PHP

PHP static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your PHP code

  • All rules 273
  • Vulnerability42
  • Bug51
  • Security Hotspot34
  • Code Smell146
 
Tags
    Impact
      Clean code attribute
        1. Server-side requests should not be vulnerable to traversing attacks

           Vulnerability
        2. Credentials should not be hard-coded

           Vulnerability
        3. Secret keys and salt values should be robust

           Vulnerability
        4. Applications should not create session cookies from untrusted input

           Vulnerability
        5. Reflection should not be vulnerable to injection attacks

           Vulnerability
        6. OS commands should not be vulnerable to argument injection attacks

           Vulnerability
        7. A new session should be created during user authentication

           Vulnerability
        8. Authorizations should be based on strong decisions

           Vulnerability
        9. Cipher algorithms should be robust

           Vulnerability
        10. Encryption algorithms should be used with secure mode and padding scheme

           Vulnerability
        11. Server hostnames should be verified during SSL/TLS connections

           Vulnerability
        12. Include expressions should not be vulnerable to injection attacks

           Vulnerability
        13. Dynamic code execution should not be vulnerable to injection attacks

           Vulnerability
        14. HTTP request redirections should not be open to forging attacks

           Vulnerability
        15. Logging should not be vulnerable to injection attacks

           Vulnerability
        16. Server-side requests should not be vulnerable to forging attacks

           Vulnerability
        17. Deserialization should not be vulnerable to injection attacks

           Vulnerability
        18. Endpoints should not be vulnerable to reflected cross-site scripting (XSS) attacks

           Vulnerability
        19. Server certificates should be verified during SSL/TLS connections

           Vulnerability
        20. LDAP connections should be authenticated

           Vulnerability
        21. Cryptographic keys should be robust

           Vulnerability
        22. Weak SSL/TLS protocols should not be used

           Vulnerability
        23. Database queries should not be vulnerable to injection attacks

           Vulnerability
        24. "file_uploads" should be disabled

           Vulnerability
        25. "enable_dl" should be disabled

           Vulnerability
        26. "session.use_trans_sid" should not be enabled

           Vulnerability
        27. "cgi.force_redirect" should be enabled

           Vulnerability
        28. "allow_url_fopen" and "allow_url_include" should be disabled

           Vulnerability
        29. "open_basedir" should limit file access

           Vulnerability
        30. Session-management cookies should not be persistent

           Vulnerability
        31. "sleep" should not be called

           Vulnerability
        32. XML parsers should not be vulnerable to XXE attacks

           Vulnerability
        33. Regular expressions should not be vulnerable to Denial of Service attacks

           Vulnerability
        34. Neither DES (Data Encryption Standard) nor DESede (3DES) should be used

           Vulnerability
        35. Cryptographic RSA algorithms should always incorporate OAEP (Optimal Asymmetric Encryption Padding)

           Vulnerability
        36. A secure password should be used when connecting to a database

           Vulnerability
        37. XPath expressions should not be vulnerable to injection attacks

           Vulnerability
        38. I/O function calls should not be vulnerable to path injection attacks

           Vulnerability
        39. LDAP queries should not be vulnerable to injection attacks

           Vulnerability
        40. OS commands should not be vulnerable to command injection attacks

           Vulnerability
        41. SHA-1 and Message-Digest hash algorithms should not be used in secure contexts

           Vulnerability
        42. Password hashing functions should use an unpredictable salt

           Vulnerability

        LDAP connections should be authenticated

        intentionality - complete
        security
        Vulnerability
        • cwe

        Lightweight Directory Access Protocol (LDAP) servers provide two main authentication methods: the SASL and Simple ones. The Simple Authentication method also breaks down into three different mechanisms:

        • Anonymous Authentication
        • Unauthenticated Authentication
        • Name/Password Authentication

        A server that accepts either the Anonymous or Unauthenticated mechanisms will accept connections from clients not providing credentials.

        Why is this an issue?

        How can I fix it?

        More Info

        When configured to accept the Anonymous or Unauthenticated authentication mechanism, an LDAP server will accept connections from clients that do not provide a password or other authentication credentials. Such users will be able to read or modify part or all of the data contained in the hosted directory.

        What is the potential impact?

        An attacker exploiting unauthenticated access to an LDAP server can access the data that is stored in the corresponding directory. The impact varies depending on the permission obtained on the directory and the type of data it stores.

        Authentication bypass

        If attackers get write access to the directory, they will be able to alter most of the data it stores. This might include sensitive technical data such as user passwords or asset configurations. Such an attack can typically lead to an authentication bypass on applications and systems that use the affected directory as an identity provider.

        In such a case, all users configured in the directory might see their identity and privileges taken over.

        Sensitive information leak

        If attackers get read-only access to the directory, they will be able to read the data it stores. That data might include security-sensitive pieces of information.

        Typically, attackers might get access to user account lists that they can use in further intrusion steps. For example, they could use such lists to perform password spraying, or related attacks, on all systems that rely on the affected directory as an identity provider.

        If the directory contains some Personally Identifiable Information, an attacker accessing it might represent a violation of regulatory requirements in some countries. For example, this kind of security event would go against the European GDPR law.

          Available In:
        • SonarQube IdeCatch issues on the fly,
          in your IDE
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube Community BuildAnalyze code in your
          on-premise CI
          Available Since
          9.1
        • SonarQube ServerAnalyze code in your
          on-premise CI
          Developer Edition
          Available Since
          9.1

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use