SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • ShellShell
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
PHP

PHP static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your PHP code

  • All rules 273
  • Vulnerability42
  • Bug51
  • Security Hotspot34
  • Code Smell146
 
Tags
    Impact
      Clean code attribute
        1. Server-side requests should not be vulnerable to traversing attacks

           Vulnerability
        2. Credentials should not be hard-coded

           Vulnerability
        3. Secret keys and salt values should be robust

           Vulnerability
        4. Applications should not create session cookies from untrusted input

           Vulnerability
        5. Reflection should not be vulnerable to injection attacks

           Vulnerability
        6. OS commands should not be vulnerable to argument injection attacks

           Vulnerability
        7. A new session should be created during user authentication

           Vulnerability
        8. Authorizations should be based on strong decisions

           Vulnerability
        9. Cipher algorithms should be robust

           Vulnerability
        10. Encryption algorithms should be used with secure mode and padding scheme

           Vulnerability
        11. Server hostnames should be verified during SSL/TLS connections

           Vulnerability
        12. Include expressions should not be vulnerable to injection attacks

           Vulnerability
        13. Dynamic code execution should not be vulnerable to injection attacks

           Vulnerability
        14. HTTP request redirections should not be open to forging attacks

           Vulnerability
        15. Logging should not be vulnerable to injection attacks

           Vulnerability
        16. Server-side requests should not be vulnerable to forging attacks

           Vulnerability
        17. Deserialization should not be vulnerable to injection attacks

           Vulnerability
        18. Endpoints should not be vulnerable to reflected cross-site scripting (XSS) attacks

           Vulnerability
        19. Server certificates should be verified during SSL/TLS connections

           Vulnerability
        20. LDAP connections should be authenticated

           Vulnerability
        21. Cryptographic keys should be robust

           Vulnerability
        22. Weak SSL/TLS protocols should not be used

           Vulnerability
        23. Database queries should not be vulnerable to injection attacks

           Vulnerability
        24. "file_uploads" should be disabled

           Vulnerability
        25. "enable_dl" should be disabled

           Vulnerability
        26. "session.use_trans_sid" should not be enabled

           Vulnerability
        27. "cgi.force_redirect" should be enabled

           Vulnerability
        28. "allow_url_fopen" and "allow_url_include" should be disabled

           Vulnerability
        29. "open_basedir" should limit file access

           Vulnerability
        30. Session-management cookies should not be persistent

           Vulnerability
        31. "sleep" should not be called

           Vulnerability
        32. XML parsers should not be vulnerable to XXE attacks

           Vulnerability
        33. Regular expressions should not be vulnerable to Denial of Service attacks

           Vulnerability
        34. Neither DES (Data Encryption Standard) nor DESede (3DES) should be used

           Vulnerability
        35. Cryptographic RSA algorithms should always incorporate OAEP (Optimal Asymmetric Encryption Padding)

           Vulnerability
        36. A secure password should be used when connecting to a database

           Vulnerability
        37. XPath expressions should not be vulnerable to injection attacks

           Vulnerability
        38. I/O function calls should not be vulnerable to path injection attacks

           Vulnerability
        39. LDAP queries should not be vulnerable to injection attacks

           Vulnerability
        40. OS commands should not be vulnerable to command injection attacks

           Vulnerability
        41. SHA-1 and Message-Digest hash algorithms should not be used in secure contexts

           Vulnerability
        42. Password hashing functions should use an unpredictable salt

           Vulnerability

        A secure password should be used when connecting to a database

        responsibility - trustworthy
        security
        Vulnerability
        • cwe

        When accessing a database, an empty password should be avoided as it introduces a weakness.

        Why is this an issue?

        How can I fix it?

        More Info

        When a database does not require a password for authentication, it allows anyone to access and manipulate the data stored within it. Exploiting this vulnerability typically involves identifying the target database and establishing a connection to it without the need for any authentication credentials.

        What is the potential impact?

        Once connected, an attacker can perform various malicious actions, such as viewing, modifying, or deleting sensitive information, potentially leading to data breaches or unauthorized access to critical systems. It is crucial to address this vulnerability promptly to ensure the security and integrity of the database and the data it contains.

        Unauthorized Access to Sensitive Data

        When a database lacks a password for authentication, it opens the door for unauthorized individuals to gain access to sensitive data. This can include personally identifiable information (PII), financial records, intellectual property, or any other confidential information stored in the database. Without proper access controls in place, malicious actors can exploit this vulnerability to retrieve sensitive data, potentially leading to identity theft, financial loss, or reputational damage.

        Compromise of System Integrity

        Without a password requirement, unauthorized individuals can gain unrestricted access to a database, potentially compromising the integrity of the entire system. Attackers can inject malicious code, alter configurations, or manipulate data within the database, leading to system malfunctions, unauthorized system access, or even complete system compromise. This can disrupt business operations, cause financial losses, and expose the organization to further security risks.

        Unwanted Modifications or Deletions

        The absence of a password for database access allows anyone to make modifications or deletions to the data stored within it. This poses a significant risk, as unauthorized changes can lead to data corruption, loss of critical information, or the introduction of malicious content. For example, an attacker could modify financial records, tamper with customer orders, or delete important files, causing severe disruptions to business processes and potentially leading to financial and legal consequences.

        Overall, the lack of a password configured to access a database poses a serious security risk, enabling unauthorized access, data breaches, system compromise, and unwanted modifications or deletions. It is essential to address this vulnerability promptly to safeguard sensitive data, maintain system integrity, and protect the organization from potential harm.

          Available In:
        • SonarQube IdeCatch issues on the fly,
          in your IDE
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube Community BuildAnalyze code in your
          on-premise CI
          Available Since
          9.1
        • SonarQube ServerAnalyze code in your
          on-premise CI
          Developer Edition
          Available Since
          9.1

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use