Encryption algorithms are essential for protecting sensitive information and ensuring secure communications in a variety of domains. They are used
for several important reasons:
- Confidentiality, privacy, and intellectual property protection
- Security during transmission or on storage devices
- Data integrity, general trust, and authentication
When selecting encryption algorithms, tools, or combinations, you should also consider two things:
- No encryption is unbreakable.
- The strength of an encryption algorithm is usually measured by the effort required to crack it within a reasonable time frame.
For these reasons, as soon as cryptography is included in a project, it is important to choose encryption algorithms that are considered strong and
secure by the cryptography community.
To provide communication security over a network, SSL and TLS are generally used. However, it is important to note that the following protocols are
all considered weak by the cryptographic community, and are officially deprecated:
- SSL versions 1.0, 2.0 and 3.0
- TLS versions 1.0 and 1.1
When these unsecured protocols are used, it is best practice to expect a breach: that a user or organization with malicious intent will perform
mathematical attacks on this data after obtaining it by other means.
What is the potential impact?
After retrieving encrypted data and performing cryptographic attacks on it on a given timeframe, attackers can recover the plaintext that
encryption was supposed to protect.
Depending on the recovered data, the impact may vary.
Below are some real-world scenarios that illustrate the potential impact of an attacker exploiting the vulnerability.
Additional attack surface
By modifying the plaintext of the encrypted message, an attacker may be able to trigger additional vulnerabilities in the code. An attacker can
further exploit a system to obtain more information.
Encrypted values are often considered trustworthy because it would not be possible for a
third party to modify them under normal circumstances.
Breach of confidentiality and privacy
When encrypted data contains personal or sensitive information, its retrieval by an attacker can lead to privacy violations, identity theft,
financial loss, reputational damage, or unauthorized access to confidential systems.
In this scenario, the company, its employees, users, and partners could be seriously affected.
The impact is twofold, as data breaches and exposure of encrypted data can undermine trust in the organization, as customers, clients and
stakeholders may lose confidence in the organization’s ability to protect their sensitive data.
Legal and compliance issues
In many industries and locations, there are legal and compliance requirements to protect sensitive data. If encrypted data is compromised and the
plaintext can be recovered, companies face legal consequences, penalties, or violations of privacy laws.