SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • ShellShell
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
Java

Java static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your JAVA code

  • All rules 733
  • Vulnerability60
  • Bug175
  • Security Hotspot40
  • Code Smell458

  • Quick Fix 65
 
Tags
    Impact
      Clean code attribute
        1. Sensitive information should not be logged in production builds

           Vulnerability
        2. WebViews should not be vulnerable to cross-app scripting attacks

           Vulnerability
        3. Privileged prompts should not be vulnerable to injection attacks

           Vulnerability
        4. Server-side requests should not be vulnerable to traversing attacks

           Vulnerability
        5. Accessing files should not lead to filesystem oracle attacks

           Vulnerability
        6. Environment variables should not be defined from untrusted input

           Vulnerability
        7. Credentials should not be hard-coded

           Vulnerability
        8. Counter Mode initialization vectors should not be reused

           Vulnerability
        9. XML operations should not be vulnerable to injection attacks

           Vulnerability
        10. JSON operations should not be vulnerable to injection attacks

           Vulnerability
        11. Thread suspensions should not be vulnerable to Denial of Service attacks

           Vulnerability
        12. Components should not be vulnerable to intent redirection

           Vulnerability
        13. XML signatures should be validated securely

           Vulnerability
        14. XML parsers should not be vulnerable to Denial of Service attacks

           Vulnerability
        15. XML parsers should not load external schemas

           Vulnerability
        16. XML parsers should not allow inclusion of arbitrary files

           Vulnerability
        17. Mobile database encryption keys should not be disclosed

           Vulnerability
        18. Applications should not create session cookies from untrusted input

           Vulnerability
        19. Reflection should not be vulnerable to injection attacks

           Vulnerability
        20. Extracting archives should not lead to zip slip vulnerabilities

           Vulnerability
        21. OS commands should not be vulnerable to argument injection attacks

           Vulnerability
        22. A new session should be created during user authentication

           Vulnerability
        23. Authorizations should be based on strong decisions

           Vulnerability
        24. OpenSAML2 should be configured to prevent authentication bypass

           Vulnerability
        25. JWT should be signed and verified with strong cipher algorithms

           Vulnerability
        26. Cipher algorithms should be robust

           Vulnerability
        27. Encryption algorithms should be used with secure mode and padding scheme

           Vulnerability
        28. Server hostnames should be verified during SSL/TLS connections

           Vulnerability
        29. Server-side templates should not be vulnerable to injection attacks

           Vulnerability
        30. Insecure temporary file creation methods should not be used

           Vulnerability
        31. Passwords should not be stored in plaintext or with a fast hashing algorithm

           Vulnerability
        32. Dynamic code execution should not be vulnerable to injection attacks

           Vulnerability
        33. "ActiveMQConnectionFactory" should not be vulnerable to malicious code deserialization

           Vulnerability
        34. NoSQL operations should not be vulnerable to injection attacks

           Vulnerability
        35. HTTP request redirections should not be open to forging attacks

           Vulnerability
        36. Logging should not be vulnerable to injection attacks

           Vulnerability
        37. Server-side requests should not be vulnerable to forging attacks

           Vulnerability
        38. Deserialization should not be vulnerable to injection attacks

           Vulnerability
        39. Endpoints should not be vulnerable to reflected cross-site scripting (XSS) attacks

           Vulnerability
        40. Server certificates should be verified during SSL/TLS connections

           Vulnerability
        41. Persistent entities should not be used as arguments of "@RequestMapping" methods

           Vulnerability
        42. "HttpSecurity" URL patterns should be correctly ordered

           Vulnerability
        43. LDAP connections should be authenticated

           Vulnerability
        44. Cryptographic keys should be robust

           Vulnerability
        45. Weak SSL/TLS protocols should not be used

           Vulnerability
        46. Secure random number generators should not output predictable values

           Vulnerability
        47. Database queries should not be vulnerable to injection attacks

           Vulnerability
        48. Cipher Block Chaining IVs should be unpredictable

           Vulnerability
        49. XML parsers should not be vulnerable to XXE attacks

           Vulnerability
        50. Classes should not be loaded dynamically

           Vulnerability
        51. Basic authentication should not be used

           Vulnerability
        52. Regular expressions should not be vulnerable to Denial of Service attacks

           Vulnerability
        53. "HttpServletRequest.getRequestedSessionId()" should not be used

           Vulnerability
        54. A secure password should be used when connecting to a database

           Vulnerability
        55. XPath expressions should not be vulnerable to injection attacks

           Vulnerability
        56. I/O function calls should not be vulnerable to path injection attacks

           Vulnerability
        57. LDAP queries should not be vulnerable to injection attacks

           Vulnerability
        58. OS commands should not be vulnerable to command injection attacks

           Vulnerability
        59. Password hashing functions should use an unpredictable salt

           Vulnerability
        60. Exceptions should not be thrown from servlet methods

           Vulnerability

        Insecure temporary file creation methods should not be used

        intentionality - complete
        security
        Vulnerability
        • cwe

        Temporary files are considered insecurely created when the file existence check is performed separately from the actual file creation. Such a situation can occur when creating temporary files using normal file handling functions or when using dedicated temporary file handling functions that are not atomic.

        Why is this an issue?

        How can I fix it?

        More Info

        Creating temporary files in a non-atomic way introduces race condition issues in the application’s behavior. Indeed, a third party can create a given file between when the application chooses its name and when it creates it.

        In such a situation, the application might use a temporary file that it does not entirely control. In particular, this file’s permissions might be different than expected. This can lead to trust boundary issues.

        What is the potential impact?

        Attackers with control over a temporary file used by a vulnerable application will be able to modify it in a way that will affect the application’s logic. By changing this file’s Access Control List or other operating system-level properties, they could prevent the file from being deleted or emptied. They may also alter the file’s content before or while the application uses it.

        Depending on why and how the affected temporary files are used, the exploitation of a race condition in an application can have various consequences. They can range from sensitive information disclosure to more serious application or hosting infrastructure compromise.

        Information disclosure

        Because attackers can control the permissions set on temporary files and prevent their removal, they can read what the application stores in them. This might be especially critical if this information is sensitive.

        For example, an application might use temporary files to store users' session-related information. In such a case, attackers controlling those files can access session-stored information. This might allow them to take over authenticated users' identities and entitlements.

        Attack surface extension

        An application might use temporary files to store technical data for further reuse or as a communication channel between multiple components. In that case, it might consider those files part of the trust boundaries and use their content without additional security validation or sanitation. In such a case, an attacker controlling the file content might use it as an attack vector for further compromise.

        For example, an application might store serialized data in temporary files for later use. In such a case, attackers controlling those files' content can change it in a way that will lead to an insecure deserialization exploitation. It might allow them to execute arbitrary code on the application hosting server and take it over.

          Available In:
        • SonarQube IdeCatch issues on the fly,
          in your IDE
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube Community BuildAnalyze code in your
          on-premise CI
          Available Since
          9.1
        • SonarQube ServerAnalyze code in your
          on-premise CI
          Developer Edition
          Available Since
          9.1

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use