SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
Go

Go static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your GO code

  • All rules 70
  • Vulnerability20
  • Bug7
  • Security Hotspot14
  • Code Smell29
 
Tags
    Impact
      Clean code attribute
        1. Credentials should not be hard-coded

           Vulnerability
        2. Extracting archives should not lead to zip slip vulnerabilities

           Vulnerability
        3. JWT should be signed and verified with strong cipher algorithms

           Vulnerability
        4. Cipher algorithms should be robust

           Vulnerability
        5. Encryption algorithms should be used with secure mode and padding scheme

           Vulnerability
        6. Server hostnames should be verified during SSL/TLS connections

           Vulnerability
        7. Insecure temporary file creation methods should not be used

           Vulnerability
        8. Passwords should not be stored in plaintext or with a fast hashing algorithm

           Vulnerability
        9. HTTP request redirections should not be open to forging attacks

           Vulnerability
        10. Logging should not be vulnerable to injection attacks

           Vulnerability
        11. Server-side requests should not be vulnerable to forging attacks

           Vulnerability
        12. Server certificates should be verified during SSL/TLS connections

           Vulnerability
        13. Cryptographic keys should be robust

           Vulnerability
        14. Weak SSL/TLS protocols should not be used

           Vulnerability
        15. Database queries should not be vulnerable to injection attacks

           Vulnerability
        16. Cipher Block Chaining IVs should be unpredictable

           Vulnerability
        17. XPath expressions should not be vulnerable to injection attacks

           Vulnerability
        18. I/O function calls should not be vulnerable to path injection attacks

           Vulnerability
        19. OS commands should not be vulnerable to command injection attacks

           Vulnerability
        20. Password hashing functions should use an unpredictable salt

           Vulnerability

        Cryptographic keys should be robust

        responsibility - trustworthy
        security
        Vulnerability
        • cwe
        • privacy

        This vulnerability exposes encrypted data to attacks whose goal is to recover the plaintext.

        Why is this an issue?

        How can I fix it?

        More Info

        Encryption algorithms are essential for protecting sensitive information and ensuring secure communications in a variety of domains. They are used for several important reasons:

        • Confidentiality, privacy, and intellectual property protection
        • Security during transmission or on storage devices
        • Data integrity, general trust, and authentication

        When selecting encryption algorithms, tools, or combinations, you should also consider two things:

        1. No encryption is unbreakable.
        2. The strength of an encryption algorithm is usually measured by the effort required to crack it within a reasonable time frame.

        In today’s cryptography, the length of the key directly affects the security level of cryptographic algorithms.

        Note that depending on the algorithm, the term key refers to a different mathematical property. For example:

        • For RSA, the key is the product of two large prime numbers, also called the modulus.
        • For AES and Elliptic Curve Cryptography (ECC), the key is only a sequence of randomly generated bytes.
          • In some cases, AES keys are derived from a master key or a passphrase using a Key Derivation Function (KDF) like PBKDF2 (Password-Based Key Derivation Function 2)

        If an application uses a key that is considered short and insecure, the encrypted data is exposed to attacks aimed at getting at the plaintext.

        In general, it is best practice to expect a breach: that a user or organization with malicious intent will perform cryptographic attacks on this data after obtaining it by other means.

        What is the potential impact?

        After retrieving encrypted data and performing cryptographic attacks on it on a given timeframe, attackers can recover the plaintext that encryption was supposed to protect.

        Depending on the recovered data, the impact may vary.

        Below are some real-world scenarios that illustrate the potential impact of an attacker exploiting the vulnerability.

        Additional attack surface

        By modifying the plaintext of the encrypted message, an attacker may be able to trigger additional vulnerabilities in the code. An attacker can further exploit a system to obtain more information.
        Encrypted values are often considered trustworthy because it would not be possible for a third party to modify them under normal circumstances.

        Breach of confidentiality and privacy

        When encrypted data contains personal or sensitive information, its retrieval by an attacker can lead to privacy violations, identity theft, financial loss, reputational damage, or unauthorized access to confidential systems.

        In this scenario, the company, its employees, users, and partners could be seriously affected.

        The impact is twofold, as data breaches and exposure of encrypted data can undermine trust in the organization, as customers, clients and stakeholders may lose confidence in the organization’s ability to protect their sensitive data.

        Legal and compliance issues

        In many industries and locations, there are legal and compliance requirements to protect sensitive data. If encrypted data is compromised and the plaintext can be recovered, companies face legal consequences, penalties, or violations of privacy laws.

          Available In:
        • SonarQube IdeCatch issues on the fly,
          in your IDE
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube ServerAnalyze code in your
          on-premise CI

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use