SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
Go

Go static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your GO code

  • All rules 70
  • Vulnerability20
  • Bug7
  • Security Hotspot14
  • Code Smell29
Filtered: 38 rules found
cwe
    Impact
      Clean code attribute
        1. Credentials should not be hard-coded

           Vulnerability
        2. Hard-coded secrets are security-sensitive

           Security Hotspot
        3. Constructing arguments of system commands from user input is security-sensitive

           Security Hotspot
        4. Extracting archives should not lead to zip slip vulnerabilities

           Vulnerability
        5. JWT should be signed and verified with strong cipher algorithms

           Vulnerability
        6. Cipher algorithms should be robust

           Vulnerability
        7. Encryption algorithms should be used with secure mode and padding scheme

           Vulnerability
        8. Server hostnames should be verified during SSL/TLS connections

           Vulnerability
        9. Insecure temporary file creation methods should not be used

           Vulnerability
        10. Using publicly writable directories is security-sensitive

           Security Hotspot
        11. Passwords should not be stored in plaintext or with a fast hashing algorithm

           Vulnerability
        12. Using clear-text protocols is security-sensitive

           Security Hotspot
        13. HTTP request redirections should not be open to forging attacks

           Vulnerability
        14. Logging should not be vulnerable to injection attacks

           Vulnerability
        15. Server-side requests should not be vulnerable to forging attacks

           Vulnerability
        16. Server certificates should be verified during SSL/TLS connections

           Vulnerability
        17. Using weak hashing algorithms is security-sensitive

           Security Hotspot
        18. Delivering code in production with debug features activated is security-sensitive

           Security Hotspot
        19. Cryptographic keys should be robust

           Vulnerability
        20. Weak SSL/TLS protocols should not be used

           Vulnerability
        21. Searching OS commands in PATH is security-sensitive

           Security Hotspot
        22. Database queries should not be vulnerable to injection attacks

           Vulnerability
        23. Creating cookies without the "HttpOnly" flag is security-sensitive

           Security Hotspot
        24. Cipher Block Chaining IVs should be unpredictable

           Vulnerability
        25. Setting loose POSIX file permissions is security-sensitive

           Security Hotspot
        26. Using pseudorandom number generators (PRNGs) is security-sensitive

           Security Hotspot
        27. Creating cookies without the "secure" flag is security-sensitive

           Security Hotspot
        28. XPath expressions should not be vulnerable to injection attacks

           Vulnerability
        29. I/O function calls should not be vulnerable to path injection attacks

           Vulnerability
        30. Formatting SQL queries is security-sensitive

           Security Hotspot
        31. OS commands should not be vulnerable to command injection attacks

           Vulnerability
        32. Hard-coded credentials are security-sensitive

           Security Hotspot
        33. Password hashing functions should use an unpredictable salt

           Vulnerability
        34. All code should be reachable

           Bug
        35. "switch" statements should have "default" clauses

           Code Smell
        36. Useless "if(true) {...}" and "if(false){...}" blocks should be removed

           Bug
        37. Track uses of "TODO" tags

           Code Smell
        38. Track uses of "FIXME" tags

           Code Smell

        Extracting archives should not lead to zip slip vulnerabilities

        intentionality - complete
        security
        Vulnerability
        • cwe
        • injection

        Why is this an issue?

        How can I fix it?

        More Info

        Zip slip is a special case of path injection. It occurs when an application uses the name of an archive entry to construct a file path and access this file without validating its path first.

        This rule will consider all archives untrusted, assuming they have been created outside the application file system.

        A user with malicious intent would inject specially crafted values, such as ../, in the archive entry name to change the initial intended path. The resulting path would resolve somewhere in the filesystem where the user should not normally have access.

        What is the potential impact?

        A web application is vulnerable to Zip Slip and an attacker is able to exploit it by submitting an archive he controls.

        The files that can be affected are limited by the permission of the process that runs the application. Worst case scenario: the process runs with root privileges on Linux, and therefore any file can be affected.

        Below are some real-world scenarios that illustrate some impacts of an attacker exploiting the vulnerability.

        Override arbitrary files

        The application opens the archive to copy its entries to the file system. The entries' names contain path traversal payloads for existing files in the system, which are overwritten once the entries are copied. The vulnerability is exploited to corrupt files critical for the application or operating system to work properly.

        It could result in data being lost or the application being unavailable.

          Available In:
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube ServerAnalyze code in your
          on-premise CI

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use