SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
Go

Go static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your GO code

  • All rules 70
  • Vulnerability20
  • Bug7
  • Security Hotspot14
  • Code Smell29
Filtered: 38 rules found
cwe
    Impact
      Clean code attribute
        1. Credentials should not be hard-coded

           Vulnerability
        2. Hard-coded secrets are security-sensitive

           Security Hotspot
        3. Constructing arguments of system commands from user input is security-sensitive

           Security Hotspot
        4. Extracting archives should not lead to zip slip vulnerabilities

           Vulnerability
        5. JWT should be signed and verified with strong cipher algorithms

           Vulnerability
        6. Cipher algorithms should be robust

           Vulnerability
        7. Encryption algorithms should be used with secure mode and padding scheme

           Vulnerability
        8. Server hostnames should be verified during SSL/TLS connections

           Vulnerability
        9. Insecure temporary file creation methods should not be used

           Vulnerability
        10. Using publicly writable directories is security-sensitive

           Security Hotspot
        11. Passwords should not be stored in plaintext or with a fast hashing algorithm

           Vulnerability
        12. Using clear-text protocols is security-sensitive

           Security Hotspot
        13. HTTP request redirections should not be open to forging attacks

           Vulnerability
        14. Logging should not be vulnerable to injection attacks

           Vulnerability
        15. Server-side requests should not be vulnerable to forging attacks

           Vulnerability
        16. Server certificates should be verified during SSL/TLS connections

           Vulnerability
        17. Using weak hashing algorithms is security-sensitive

           Security Hotspot
        18. Delivering code in production with debug features activated is security-sensitive

           Security Hotspot
        19. Cryptographic keys should be robust

           Vulnerability
        20. Weak SSL/TLS protocols should not be used

           Vulnerability
        21. Searching OS commands in PATH is security-sensitive

           Security Hotspot
        22. Database queries should not be vulnerable to injection attacks

           Vulnerability
        23. Creating cookies without the "HttpOnly" flag is security-sensitive

           Security Hotspot
        24. Cipher Block Chaining IVs should be unpredictable

           Vulnerability
        25. Setting loose POSIX file permissions is security-sensitive

           Security Hotspot
        26. Using pseudorandom number generators (PRNGs) is security-sensitive

           Security Hotspot
        27. Creating cookies without the "secure" flag is security-sensitive

           Security Hotspot
        28. XPath expressions should not be vulnerable to injection attacks

           Vulnerability
        29. I/O function calls should not be vulnerable to path injection attacks

           Vulnerability
        30. Formatting SQL queries is security-sensitive

           Security Hotspot
        31. OS commands should not be vulnerable to command injection attacks

           Vulnerability
        32. Hard-coded credentials are security-sensitive

           Security Hotspot
        33. Password hashing functions should use an unpredictable salt

           Vulnerability
        34. All code should be reachable

           Bug
        35. "switch" statements should have "default" clauses

           Code Smell
        36. Useless "if(true) {...}" and "if(false){...}" blocks should be removed

           Bug
        37. Track uses of "TODO" tags

           Code Smell
        38. Track uses of "FIXME" tags

           Code Smell

        Track uses of "TODO" tags

        intentionality - complete
        maintainability
        Code Smell
        • cwe

        Why is this an issue?

        More Info

        Developers often use TODO tags to mark areas in the code where additional work or improvements are needed but are not implemented immediately. However, these TODO tags sometimes get overlooked or forgotten, leading to incomplete or unfinished code. This rule aims to identify and address unattended TODO tags to ensure a clean and maintainable codebase. This description explores why this is a problem and how it can be fixed to improve the overall code quality.

        What is the potential impact?

        Unattended TODO tags in code can have significant implications for the development process and the overall codebase.

        Incomplete Functionality: When developers leave TODO tags without implementing the corresponding code, it results in incomplete functionality within the software. This can lead to unexpected behavior or missing features, adversely affecting the end-user experience.

        Missed Bug Fixes: If developers do not promptly address TODO tags, they might overlook critical bug fixes and security updates. Delayed bug fixes can result in more severe issues and increase the effort required to resolve them later.

        Impact on Collaboration: In team-based development environments, unattended TODO tags can hinder collaboration. Other team members might not be aware of the intended changes, leading to conflicts or redundant efforts in the codebase.

        Codebase Bloat: The accumulation of unattended TODO tags over time can clutter the codebase and make it difficult to distinguish between work in progress and completed code. This bloat can make it challenging to maintain an organized and efficient codebase.

        Addressing this code smell is essential to ensure a maintainable, readable, reliable codebase and promote effective collaboration among developers.

        Noncompliant code example

        func foo() {
          // TODO
        }
        
          Available In:
        • SonarQube IdeCatch issues on the fly,
          in your IDE
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube Community BuildAnalyze code in your
          on-premise CI
          Available Since
          9.1
        • SonarQube ServerAnalyze code in your
          on-premise CI
          Developer Edition
          Available Since
          9.1

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use