SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
C#

C# static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your C# code

  • All rules 493
  • Vulnerability46
  • Bug88
  • Security Hotspot24
  • Code Smell335

  • Quick Fix 61
 
Tags
    Impact
      Clean code attribute
        1. Server-side requests should not be vulnerable to traversing attacks

           Vulnerability
        2. Content Security Policies should be restrictive

           Vulnerability
        3. JWT secret keys should not be disclosed

           Vulnerability
        4. Stack traces should not be disclosed

           Vulnerability
        5. Loop boundaries should not be vulnerable to injection attacks

           Vulnerability
        6. Connection strings should not be vulnerable to injections attacks

           Vulnerability
        7. Memory allocations should not be vulnerable to Denial of Service attacks

           Vulnerability
        8. Accessing files should not lead to filesystem oracle attacks

           Vulnerability
        9. Environment variables should not be defined from untrusted input

           Vulnerability
        10. XML operations should not be vulnerable to injection attacks

           Vulnerability
        11. XML signatures should be validated securely

           Vulnerability
        12. Applications should not create session cookies from untrusted input

           Vulnerability
        13. Reflection should not be vulnerable to injection attacks

           Vulnerability
        14. Extracting archives should not lead to zip slip vulnerabilities

           Vulnerability
        15. OS commands should not be vulnerable to argument injection attacks

           Vulnerability
        16. Types allowed to be deserialized should be restricted

           Vulnerability
        17. JWT should be signed and verified with strong cipher algorithms

           Vulnerability
        18. Cipher algorithms should be robust

           Vulnerability
        19. Encryption algorithms should be used with secure mode and padding scheme

           Vulnerability
        20. Insecure temporary file creation methods should not be used

           Vulnerability
        21. Passwords should not be stored in plaintext or with a fast hashing algorithm

           Vulnerability
        22. Dynamic code execution should not be vulnerable to injection attacks

           Vulnerability
        23. NoSQL operations should not be vulnerable to injection attacks

           Vulnerability
        24. HTTP request redirections should not be open to forging attacks

           Vulnerability
        25. Logging should not be vulnerable to injection attacks

           Vulnerability
        26. Server-side requests should not be vulnerable to forging attacks

           Vulnerability
        27. Deserialization should not be vulnerable to injection attacks

           Vulnerability
        28. Endpoints should not be vulnerable to reflected cross-site scripting (XSS) attacks

           Vulnerability
        29. Server certificates should be verified during SSL/TLS connections

           Vulnerability
        30. LDAP connections should be authenticated

           Vulnerability
        31. Cryptographic keys should be robust

           Vulnerability
        32. Weak SSL/TLS protocols should not be used

           Vulnerability
        33. Secure random number generators should not output predictable values

           Vulnerability
        34. Serialization constructors should be secured

           Vulnerability
        35. Members should not have conflicting transparency annotations

           Vulnerability
        36. "CoSetProxyBlanket" and "CoInitializeSecurity" should not be used

           Vulnerability
        37. Database queries should not be vulnerable to injection attacks

           Vulnerability
        38. Cipher Block Chaining IVs should be unpredictable

           Vulnerability
        39. XML parsers should not be vulnerable to XXE attacks

           Vulnerability
        40. Regular expressions should not be vulnerable to Denial of Service attacks

           Vulnerability
        41. A secure password should be used when connecting to a database

           Vulnerability
        42. XPath expressions should not be vulnerable to injection attacks

           Vulnerability
        43. I/O function calls should not be vulnerable to path injection attacks

           Vulnerability
        44. LDAP queries should not be vulnerable to injection attacks

           Vulnerability
        45. OS commands should not be vulnerable to command injection attacks

           Vulnerability
        46. Password hashing functions should use an unpredictable salt

           Vulnerability

        OS commands should not be vulnerable to argument injection attacks

        intentionality - complete
        security
        Vulnerability
        • cwe
        • injection

        Why is this an issue?

        How can I fix it?

        More Info

        OS command argument injections occur when applications allow the execution of operating system commands from untrusted data but the untrusted data is limited to the arguments.
        It is not possible to directly inject arbitrary commands that compromise the underlying operating system, but the behavior of the executed command still might be influenced in a way that allows to expand access, for example, execution of arbitrary commands. The security of the application depends on the behavior of the application that is executed.

        What is the potential impact?

        An attacker exploiting an arguments injection vulnerability will be able to add arbitrary argument to a system binary call. Depending on the command the parameters are added to, this might lead to arbitrary command execution.

        The impact depends on the access control measures taken on the target system OS. In the worst-case scenario, the process runs with root privileges, and therefore any OS commands or programs may be affected.

        Below are some real-world scenarios that illustrate some impacts of an attacker exploiting the vulnerability.

        Denial of service and data leaks

        In this scenario, the attack aims to disrupt the organization’s activities and profit from data leaks.

        An attacker could, for example:

        • download the internal server’s data, most likely to sell it
        • modify data, send malware
        • stop services or exhaust resources (with fork bombs for example)

        This threat is particularly insidious if the attacked organization does not maintain a disaster recovery plan (DRP).

        Root privilege escalation and pivot

        In this scenario, the attacker can do everything described in the previous section. The difference is that the attacker also manages to elevate their privileges to an administrative level and attacks other servers.

        Here, the impact depends on how much the target company focuses on its Defense In Depth. For example, the entire infrastructure can be compromised by a combination of OS injections and misconfiguration of:

        • Docker or Kubernetes clusters
        • cloud services
        • network firewalls and routing
        • OS access control
          Available In:
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube ServerAnalyze code in your
          on-premise CI
          Developer Edition
          Available Since
          9.2

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use