SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
C#

C# static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your C# code

  • All rules 493
  • Vulnerability46
  • Bug88
  • Security Hotspot24
  • Code Smell335

  • Quick Fix 61
Filtered: 17 rules found
symbolic-execution
    Impact
      Clean code attribute
        1. Locks should be released within the same method

           Bug
        2. A write lock should not be released when a read lock has been acquired and vice versa

           Bug
        3. First/Single should be used instead of FirstOrDefault/SingleOrDefault on collections that are known to be non-empty

           Code Smell
        4. JWT secret keys should not be disclosed

           Vulnerability
        5. Types allowed to be deserialized should be restricted

           Vulnerability
        6. Secure random number generators should not output predictable values

           Vulnerability
        7. Empty collections should not be accessed or iterated

           Bug
        8. Objects should not be disposed more than once

           Code Smell
        9. Calculations should not overflow

           Bug
        10. Arguments of public methods should be validated against null

           Code Smell
        11. Empty nullable value should not be accessed

           Bug
        12. Cipher Block Chaining IVs should be unpredictable

           Vulnerability
        13. Boolean expressions should not be gratuitous

           Code Smell
        14. Conditionally executed code should be reachable

           Bug
        15. Null pointers should not be dereferenced

           Bug
        16. Locks should be released on all paths

           Bug
        17. Password hashing functions should use an unpredictable salt

           Vulnerability

        Cipher Block Chaining IVs should be unpredictable

        responsibility - trustworthy
        security
        Vulnerability
        • cwe
        • symbolic-execution

        This vulnerability exposes encrypted data to a number of attacks whose goal is to recover the plaintext.

        Why is this an issue?

        How can I fix it?

        More Info

        Encryption algorithms are essential for protecting sensitive information and ensuring secure communications in a variety of domains. They are used for several important reasons:

        • Confidentiality, privacy, and intellectual property protection
        • Security during transmission or on storage devices
        • Data integrity, general trust, and authentication

        When selecting encryption algorithms, tools, or combinations, you should also consider two things:

        1. No encryption is unbreakable.
        2. The strength of an encryption algorithm is usually measured by the effort required to crack it within a reasonable time frame.

        In the mode Cipher Block Chaining (CBC), each block is used as cryptographic input for the next block. For this reason, the first block requires an initialization vector (IV), also called a "starting variable" (SV).

        If the same IV is used for multiple encryption sessions or messages, each new encryption of the same plaintext input would always produce the same ciphertext output. This may allow an attacker to detect patterns in the ciphertext.

        What is the potential impact?

        After retrieving encrypted data and performing cryptographic attacks on it on a given timeframe, attackers can recover the plaintext that encryption was supposed to protect.

        Depending on the recovered data, the impact may vary.

        Below are some real-world scenarios that illustrate the potential impact of an attacker exploiting the vulnerability.

        Additional attack surface

        By modifying the plaintext of the encrypted message, an attacker may be able to trigger additional vulnerabilities in the code. An attacker can further exploit a system to obtain more information.
        Encrypted values are often considered trustworthy because it would not be possible for a third party to modify them under normal circumstances.

        Breach of confidentiality and privacy

        When encrypted data contains personal or sensitive information, its retrieval by an attacker can lead to privacy violations, identity theft, financial loss, reputational damage, or unauthorized access to confidential systems.

        In this scenario, a company, its employees, users, and partners could be seriously affected.

        The impact is twofold, as data breaches and exposure of encrypted data can undermine trust in the organization, as customers, clients and stakeholders may lose confidence in the organization’s ability to protect their sensitive data.

        Legal and compliance issues

        In many industries and locations, there are legal and compliance requirements to protect sensitive data. If encrypted data is compromised and the plaintext can be recovered, companies face legal consequences, penalties, or violations of privacy laws.

          Available In:
        • SonarQube IdeCatch issues on the fly,
          in your IDE
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube ServerAnalyze code in your
          on-premise CI
          Developer Edition
          Available Since
          9.1

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use