SonarSource Rules
  • Products

    In-IDE

    Code Quality and Security in your IDE with SonarQube Ide

    IDE extension that lets you fix coding issues before they exist!

    Discover SonarQube for IDE

    SaaS

    Code Quality and Security in the cloud with SonarQube Cloud

    Setup is effortless and analysis is automatic for most languages

    Discover SonarQube Cloud

    Self-Hosted

    Code Quality and Security Self-Hosted with SonarQube Server

    Fast, accurate analysis; enterprise scalability

    Discover SonarQube Server
  • SecretsSecrets
  • ABAPABAP
  • AnsibleAnsible
  • ApexApex
  • AzureResourceManagerAzureResourceManager
  • CC
  • C#C#
  • C++C++
  • CloudFormationCloudFormation
  • COBOLCOBOL
  • CSSCSS
  • DartDart
  • DockerDocker
  • FlexFlex
  • GitHub ActionsGitHub Actions
  • GoGo
  • HTMLHTML
  • JavaJava
  • JavaScriptJavaScript
  • JSONJSON
  • JCLJCL
  • KotlinKotlin
  • KubernetesKubernetes
  • Objective CObjective C
  • PHPPHP
  • PL/IPL/I
  • PL/SQLPL/SQL
  • PythonPython
  • RPGRPG
  • RubyRuby
  • RustRust
  • ScalaScala
  • ShellShell
  • SwiftSwift
  • TerraformTerraform
  • TextText
  • TypeScriptTypeScript
  • T-SQLT-SQL
  • VB.NETVB.NET
  • VB6VB6
  • XMLXML
  • YAMLYAML
C++

C++ static code analysis

Unique rules to find Bugs, Vulnerabilities, Security Hotspots, and Code Smells in your C++ code

  • All rules 674
  • Vulnerability13
  • Bug139
  • Security Hotspot19
  • Code Smell503

  • Quick Fix 91
Filtered: 24 rules found
performance
    Impact
      Clean code attribute
        1. "std::format" should be used instead of standard output manipulators

           Code Smell
        2. Concatenated "std::format" outputs should be replaced by a single invocation

           Code Smell
        3. Use conditional suspension to resume current coroutine

           Code Smell
        4. rvalue reference members should not be copied accidentally

           Code Smell
        5. "std::string_view" and "std::span" parameters should be directly constructed from sequences

           Code Smell
        6. Empty class members should be marked as "[[no_unique_address]]"

           Code Smell
        7. Transparent function objects should be used with associative "std::string" containers

           Code Smell
        8. "emplace" should be prefered over "insert" with "std::set" and "std::unordered_set"

           Code Smell
        9. Unnecessary expensive copy should be avoided when using auto as a placeholder type

           Code Smell
        10. "try_emplace" should be used with "std::map" and "std::unordered_map"

           Code Smell
        11. Heterogeneous sorted containers should only be used with types that support heterogeneous comparison

           Bug
        12. Objects should not be created solely to be passed as arguments to functions that perform delegated object creation

           Code Smell
        13. "std::filesystem::path" should be used to represent a file path

           Code Smell
        14. Emplacement should be preferred when insertion creates a temporary with sequence containers

           Code Smell
        15. Return type of functions shouldn't be const qualified value

           Code Smell
        16. "std::endl" should not be used

           Code Smell
        17. Capture by reference in lambdas used locally

           Code Smell
        18. "std::move" should not inhibit optimizations

           Code Smell
        19. Template parameters should be preferred to "std::function" when configuring behavior at compile time

           Code Smell
        20. Special member function should not be defined unless a non standard behavior is required

           Code Smell
        21. Member data should be initialized in-class or in a constructor initialization list

           Code Smell
        22. Bit fields should not be used

           Code Smell
        23. The prefix increment/decrement form should be used

           Code Smell
        24. Pass by reference to const should be used for large input parameters

           Code Smell

        rvalue reference members should not be copied accidentally

        intentionality - efficient
        maintainability
        Code Smell
        • performance
        • since-c++11
        • pitfall

        Why is this an issue?

        C++11 introduced the concept of forwarding-reference, as a way to transfer values efficiently. In combination with std::forward, their usage allows passing values without unnecessary copies.

        The expression std::forward<T>(obj).mem, can be used to forward the value of the member, according to the type of obj: move the value of member mem if the obj is an rvalue reference and copy it otherwise. However, in the corner case, when the member mem is of rvalue reference type, the value it references will be copied even if obj itself is an rvalue, the referenced value will not be moved.

        Similarly for std::move: if mem is of rvalue reference type, std::move(obj).mem will copy the value referenced by mem.

        This rule raises issues when a templates is instantiated with a type that leads to an accidental copy of members of forwarded objects.

        Noncompliant code example

        template<typename... Ts>
        void consume(Ts&&... ts)
        
        
        template<typename T, typename U>
        void consumePair(std::pair<T, U>&& p) {
          consume(std::move(p).first, std::move(p).second); // Noncompliant (see later)
        }
        void use1() {
          std::string x = "x", y = "y";
          std::pair<std:string&&, std::string&&> rRefPair(std::move(x), std::move(y));
          consumePair(std::move(rRefPair)); // Triggers noncompliant instantiation of consumePair
                                            // with T = std:::string&& and U = std::string&&
        }
        
        
        template<typename Pair>
        void forwardPair(Pair&& p) {
          consume(std::forward<Pair>(p).first, std::forward<Pair>(p).second); // Noncompliant (see later)
        }
        void use2() {
          std::string x = "x", y = "y";
          std::pair<std:string&&, std::string&&> rRefPair(std::move(x), std::move(y));
          forwardPair(rRefPair); // OK, lvalue is passed, and the members should and are copied
                                 // Pair = std::pair<std:string&&, std::string&&>&
          forwardPair(std::move(rRefPair)); // Triggers noncompliant instantiation of forwardPair
                                            // with Pair = std::pair<std:string&&, std::string&&>
        }
        
        
        template<typename Pair>
        void forwardStruct(T&& p) {
          consume(std::forward<T>(p).mem); // Noncompliant (see later)
        }
        struct Proxy {
            std::vector<int>&& mem;
        };
        void use3() {
          std::vector<int> v;
          Proxy proxy{std::move(v)};
          forwardStruct(proxy); // OK, lvalue is passed, and the members should and are copied
                                // T = Proxy&
          forwardStruct(std::move(proxy)); // Triggers noncompliant instantiation of forwardStruct
                                           // with T = Proxy
        }
        
        
        void compiler_error() {
          std::unique_ptr<int> u;
          std::pair<std::unique_ptr<int>&&, int> pair(std::move(u), 1);
          // std::unique_ptr<int> u2 = std::move(pair).first; // ill-formed trying to copy
        }
        

        Compliant solution

        template<typename T, typename U>
        void consumePair(std::pair<T, U>&& p) {
            consume(std::get<0>(std::move(p)), std::get<1>(std::move(p)));
        }
        
        
        template<typename Pair>
        void forwardPair(Pair&& p) {
            consume(std::get<0>(std::forward<Pair>(p)), std::get<1>(std::forward<Pair>(p)));
        }
        
        
        template<typename Pair>
        void forwardStruct(T&& t) {
          constexpr bool isMoveOfRvalueReferenceMember
              = std::is_rvalue_reference_v<decltype(t.mem)> && std::is_rvalue_reference_v<T&&>;
          if constexpr (isMoveOfRvalueReferenceMember) {
            consume(std::move(t.mem));
          } else {
            consume(std::forward<T>(t).mem);
          }
        }
        
        
        void compiler_error() {
          std::unique_ptr<int> u;
          std::pair<std::unique_ptr<int>&&, int> pair(std::move(u), 1);
          std::unique_ptr<int> u2 = std::move(pair.first);
        }
        
          Available In:
        • SonarQube IdeCatch issues on the fly,
          in your IDE
        • SonarQube CloudDetect issues in your GitHub, Azure DevOps Services, Bitbucket Cloud, GitLab repositories
        • SonarQube ServerAnalyze code in your
          on-premise CI
          Developer Edition
          Available Since
          9.2

        © 2008-2025 SonarSource SA. All rights reserved.

        Privacy Policy | Cookie Policy | Terms of Use