"Cognitive complexity" is a measure of how hard the control flow of a function is to understand. Code with high cognitive complexity is hard to
read, understand, test, and modify.
This rule raises on coroutines with high cognitive complexity.
As a rule of thumb, high cognitive complexity is a sign that the code should be refactored into smaller, easier-to-manage pieces.
Which syntax in code does impact cognitive complexity score?
Here are the core concepts:
- Cognitive complexity is incremented each time the code breaks the normal linear reading flow.
This concerns, for example,
loop structures, conditionals, catches, switches, jumps to labels, and conditions mixing multiple operators.
- Each nesting level increases complexity.
During code reading, the deeper you go through nested layers, the harder it
becomes to keep the context in mind.
- Method calls are free
A well-picked method name is a summary of multiple lines of code. A reader can first explore a
high-level view of what the code is performing then go deeper and deeper by looking at called functions content.
Note: This does not
apply to recursive calls, those will increment cognitive score.
The method of computation is fully detailed in the pdf linked in the resources.